Supplemental material

Supplemental materials and methods

Anti-HMGB-1 mAB binding assay

To confirm the binding specificity of the anti-high mobility group box 1 (HMGB-1) monoclonal antibody (mAB), the antibody was incubated in the dark for 2 hours on ice with EZ-Link Sulfo–NHS-LC-Biotin (ThermoFisher, Waltham, Massachusetts, USA) in a ratio of 2:1 respectively, while gently shaking. After incubation, unbound biotin was removed by 48-hour dialysis against phosphate buffered saline (PBS), using a 12-14 kDa semi-permeable membrane. A 96-well plate was then coated overnight at 4°C with recombinant HMGB-1 in concentrations ranging from 0 μg ml⁻¹ to 20 μg ml⁻¹ (Abcam, Cambridge, UK). After blocking all remaining binding spots for two hours at room temperature with 1% BSA/PBS and washing with 0.05% tween/PBS, the biotinylated anti-HMGB-1 mAB was added in concentrations ranging from 0 μg ml⁻¹ to 10 μg ml⁻¹. Subsequently, the plate was incubated at room temperature for 30 minutes. After washing the reaction was initiated by the addition of 3,3′,5,5′-tetramethylbenzidine (TMB), sodium acetate buffer, and hydrogen peroxide 3%. The reaction was stopped after 5 minutes by adding sulfuric acid 2M and optical density was measured.

Dose-response

Two separate dose-response experiments for anti-HMGB-1 mAB) and recombinant thrombomodulin (rTM) were performed using the same model of trauma and shock, as described in the manuscript. Mice were randomized between four doses of anti-HMGB-1 mAB and five doses of rTM or vehicle (N=6 per group). For anti-HMGB-1 mAB the following doses were tested: $0 \mu g g^{-1}$, $0.4 \mu g g^{-1}$, $1 \mu g g^{-1}$ and $2.5 \mu g g^{-1}$. Doses were based on prior work using the same anti-HMGB-1 mAB. For rTM the doses were $0 \mu g g^{-1}$, $0.0017 \mu g g^{-1}$, $0.01 \mu g g^{-1}$, $0.06 \mu g g^{-1}$ and $0.36 \mu g g^{-1}$. Adequate dose for both drugs was determined based primarily on rotational thromboelastometry (ROTEM). In addition, safety was assessed by measuring organ wet/dry ratios and mortality.

Organ wet/dry ratios

The left lung, part of the liver, and the left kidney were collected and wet weight was determined after the experiment (Pioneer PX series; Avantor, Radnor Township, Pennsylvania, USA). After drying the organs at 37 °C for seven days they were weighted again to determine wet/dry ratios.

Organ histopathology

After the experiment the right lobe of the lung was fixed in 4% formaldehyde and embedded in paraffin, after which 4- μ m thick sections were cut and stained with haematoxylin and eosin. Sections were scored by a pathologist for lung oedema, interstitial inflammatory cell infiltration, endothelialitis, haemorrhage and the presence of thrombi or coagulation. The scale of each category consisted of a score of 0 (absent) to 3 (severe).

Plasma markers of inflammation

Soluble P-selectin (sCD62P), soluble intercellular adhesion molecule-1 (sICAM-1), interleukin 1β (IL- 1β) and IL-6 were measured with Luminex according to the manufacturer's instructions (Bio-Techne, Minneapolis, Minnesota, USA).

Supplemental tables

Assay	Buffer		Platelet identifying marker		Platelet activation marker		Agonist		WB	Total volume	Incuba tion Time	Blocking buffer	
Platelet activation 1	TB + CaCl ₂ (2 mM final)	13 μΙ	CD41- APC	1 μΙ	JON/A -PE	4 μl	Control	1μ1	1 μ1	20 µl	15 min	TB	200 μΙ
Platelet activation 2	TB + CaCl ₂ (2 mM final)	13 μΙ	CD41- APC	1 μl	JON/A -PE	4 μΙ	ADP (20 μM final)	1 μ1	1 μ1	20 μΙ	15 min	ТВ	200 μΙ
Platelet activation 3	TB + CaCl ₂ (2 mM final)	13 μ1	CD41- APC	1 μ1	JON/A -PE	4 μ1	PAR4-AP (100 μM final)	1 μ1	1 μ1	20 μΙ	15 min	ТВ	200 μΙ
Platelet activation 4	ТВ	16 μl	CD41- APC	1 μl	CD62 P- FITC	1 μ1	Control	1 μ1	1 μl	20 μΙ	15 min	ТВ	200 μ1
Platelet activation 5	ТВ	16 μl	CD41- APC	1 μl	CD62 P- FITC	1 μ1	ADP (20 µM final)	1 μ1	1 μl	20 μΙ	15 min	ТВ	200 μΙ
Platelet activation 6	ТВ	16 μl	CD41- APC	1 μl	CD62 P- FITC	1 μ1	PAR4-AP (100 μM final)	1 μ1	1 μl	20 μΙ	15 min	ТВ	200 μΙ
Assay	id		Platelet identify marker	ntifying identifying		Neutrophil identifying marker			Total volume	Incuba ne tion time	Blocking buffer		
Platelet- leukocyte aggregates Single 1	ТВ	1 μl	CD41- APC	1 μ1	CD45	1 μ1			1 μ1	8 μ1	15 min	BD FACS lysis	200 μ1
Platelet- leukocyte aggregates Single 2	ТВ	1 μl	CD41- APC	1 μ1			Ly6G	1 μ1	5 μΙ	8 µ1	15 min	BD FACS lysis	200 μΙ
Platelet- leukocyte aggregates combined			CD41- APC	1 μl	CD45	1 μ1	Ly6G	1 μΙ	5 μl	8 µ1	15 min	BD FACS lysis	200 μΙ

Table S1: Incubation conditions for platelet activation and platelet-leukocyte aggregates. All antibodies were used at undiluted concentration. TB, Tyrode's buffer buffer (NaCl 137 mM, HEPES 10 mM, KCl 2.8 mM, MgCl₂1 mM, NaHCO₃-12 mM, Na₂HPO₄0.4 mM, glucose 5 mM and bovine serum albumin 0.35%, WB, whole blood; ADP, adenosine diphosphate; PAR4-AP, protease activated receptor 4 - activating peptide.

	VEH (mAB)	0.4 μg g ⁻¹	1.0 μg g ⁻¹	2.5 μg g ⁻¹
General				
Weight (g)	27.8 (26.7 – 28.9)	28.1 (25.7 – 30.6)	29.2 (27.7 – 29.6)	28.4 (26.4 – 29.4)
Blood withdrawn (µl)	650 (500 – 730)	680 (550 – 710)	600 (590 – 790)	630 (590 – 710)
Arterial blood gas				
pH	7.28 (7.20 – 7.36)	7.31 (7.27 – 7.34)	7.32 (7.22 – 7.36)	7.28 (7.10 – 7.36)
pCO ₂ (kPa)	3.8 (2.6 – 4.0)	3.8 (3.6 – 4.4)	3.9 (2.9 – 4.4)	3.4 (2.8 – 4.1)
pO_2 (kPa)	21.9 (18.7 – 28.0)	24.5 (21.3 – 25.9)	26.7 (21.7 – 27.5)	24.1 (21.3 – 28.7)
HCO_3^- (mM)	13.2 (7.5 – 16.5)	14.9 (13.1 – 16.2)	12.5 (11.3 – 15.4)	11.2 (8.2 – 14.2)
BD (mM)	12.4 (7.8 – 18.5)	10.4 (8.6 – 12.0)	10.8 (9.4 – 15.0)	14.2 (10.0 – 19.5)
Hb (mM)	6.9 (6.4 – 6.9)	6.8 (6.2 – 7.6)	7.0 (6.2 – 7.1)	6.7 (6.0 – 6.9)
$K^{+}(mM)$	6.0 (5.8 – 7.5)	5.6 (4.9 – 6.0)	6.2 (5.7 – 6.8)	6.3 (5.6 – 7.4)
Ca ²⁺ (mM)	0.98 (0.85 – 1.05)	0.97 (0.91 – 0.99)	1.00 (0.91 – 1.15)	1.05 (1.03 – 1.06)
Glucose (mM)	11.3 (10.2 – 12.3)	9.5 (7.9 – 11.6)	9.0 (8.8 – 11.7)	11.4 (9.8 – 12.8)
Rotational thromboelasto	ometry			
CT (s)	36 (31 – 44)	40 (34 – 42)	39 (30 – 45)	36 (34 – 41)
CFT (s)	113 (104 – 125)	112 (87 – 130)	98 (78 – 110)	125 (115 – 160)
Alpha (°)	73 (72 – 78)	74 (68 – 79)	76 (73 – 82)	75 (71 – 76)
A5 (mm)	33 (31 – 34)	35 (32 – 38)	36 (34 – 39)	32 (27 – 34)
MCF (mm)	46 (44 – 48)	53 (47 – 56)	55 (48 – 57)	44 (40 – 48)
LI30 (%)	100 (100 – 100)	100 (99 – 100)	100 (98 – 100)	100 (98 – 100)
LI60 (%)	98 (95 – 100)	100 (93 – 100)	99 (91 – 100)	94 (92 – 96)
Organ wet/dry				
Lung	3.7 (3.5 – 3.8)	3.8 (3.6 – 3.9)	3.8 (3.4 – 4.2)	4.0 (3.4 – 4.7)
Kidney	3.8 (3.7 – 4.1)	3.6 (3.5 – 3.7)	3.6 (3.6 – 3.7)	3.6 (3.4 – 4.0)
Liver	3.2 (3.2 – 3.2)	3.1 (3.1 – 3.2)	3.2 (3.1 – 3.4)	3.3 (3.2 – 3.7)

Table S2: Dose-response of anti-HMGB1 mAB. VEH, vehicle for anti-high mobility group box-1 (HMGB-1) monoclonal antibody (mAB); BD, base deficit; Hb, haemoglobin; CT, clotting time; CFT, clot formation time; A5, amplitude at 5 min after CT; MCF, maximum clot firmness; LI30, lysis index at 30 min after CT; LI60, lysis index at 60 min after CT. Data are presented as median (interquartile range).

	VEH (rTM)	$0.0017~\mu g~g^{\text{-}1}$	$0.01~\mu g~g^{\text{-}1}$	$0.06~\mu g~g^{\text{-}1}$	0.36 μg g ⁻¹
General					
Weight (g)	27.0 (26.2 – 27.5)	27.0 (26.1 – 28.0)	28.1 (25.7 – 28.9)	26.9 (25.9 – 27.8)	27.6 (26.2 – 28.8)
Blood withdrawn (µl)	580 (500 – 710)	580 (500 – 660)	580 (550 – 700)	630 (540 – 700)	580 (480 – 630)
Arterial blood gas	7.21 (7.09 – 7.22)	7.25 (7.16 – 7.33)	7.19 (7.19 – 7.29)	7.24 (7.02 – 7.32)	7.25 (7.02 – 7.33)
pCO ₂ (kPa)	5.1(4.4 - 6.4)	5.1 (4.4 – 6.1)	4.4 (3.3 – 6.4)	5.2 (4.8 – 5.7)	5.3 (4.0 – 6.1)
pO ₂ (kPa)	30.0 (28.4 – 31.6)	27.3 (25.2 – 28.8)	26.7 (24.3 – 29.2)	27.6 (25.1 – 30.0)	28.1 (21.9 – 30.9)
HCO_3^- (mM)	13.3 (11.5 – 18.8)	16.1 (13.3 – 19.6)	14.9 (10.3 – 18.2)	16.5 (14.6 – 17.8)	19.1 (9.0 – 20.1)
BD (mM)	13.3 (8.9 – 17.4)	9.3 (7.4 – 13.8)	11.4 (8.8 – 17.0)	10.7 (8.2 – 12.5)	7.8 (5.4 – 20.7)
Hb (mM)	6.4 (6.3 – 7.5)	6.3 (5.8 – 6.7)	6.6 (6.0 – 7.1)	6.9 (6.4 – 7.1)	6.7 (6.0 – 7.2)
K^{+} (mM)	6.1 (5.9 – 7.1)	6.1 (5.7 – 6.6)	6.6 (5.9 – 7.4)	6.2 (5.4 – 6.5)	5.4 (5.2 – 6.1)
Ca ²⁺ (mM)	1.06 (1.00 – 1.14)	1.04 (0.92 – 1.12)	1.04 (0.86 – 1.07)	0.99 (0.95 – 1.14)	1.08 (1.01 – 1.19)
Glucose (mM)	11.1 (10.8 – 11.1)	11.3 (8.6 – 12.3)	7.8 (5.9 – 11.4)	12.9 (9.2 – 13.1)	11.1 (8.4 – 14.3)
Rotational thromboelas	tometry				
CT (s)	35 (31 – 36)	35 (34 – 38)	39 (37 – 50)	41 (36 – 53)	38 (33 – 43)
CFT (s)	89 (67 – 140)	89 (75 – 134)	113 (92 – 134)	97 (88 – 154)	94 (78 – 122)
Alpha (°)	79 (73 – 84)	77 (70 – 83)	74 (72 – 78)	73 (65 – 80)	77 (69 – 80)
A5 (mm)	37 (30 – 40)	36 (30 – 40)	32 (30 – 36)	30 (29 – 36)	37 (31 – 39)
MCF (mm)	52 (41 – 58)	51 (44 – 57)	52 (47 – 55)	48 (45 – 51)	55 (50 – 57)
LI30 (%)	100 (94 – 100)	100 (96 – 100)	100 (100 – 100)	100 (100 – 100)	100 (100 – 100)
LI60 (%)	90 (87 – 100)	99 (91 – 100)	100 (98 – 100)	98 (95 – 100)	100 (94 – 100)
Organ wet/dry					
Lung	4.1 (3.5 – 4.2)	3.8 (3.4 – 4.3)	3.6 (3.0 – 4.2)	3.7 (3.3 – 4.1)	3.4 (2.8 – 4.1)
Kidney	3.5 (3.3 – 3.6)	3.4 (3.4 – 3.5)	3.5 (3.3 – 3.6)	3.7 (3.5 – 3.9)	3.8 (3.5 – 3.9)
Liver	3.2 (3.1 – 3.3)	3.2 (3.1 – 3.2)	3.2 (3.0 – 3.3)	3.2 (3.1 – 3.3)	3.2 (3.1 – 3.4)

Table S3: Dose-response of recombinant thrombomodulin. VEH, vehicle for recombinant thrombomodulin (rTM); BD, base deficit; Hb, haemoglobin; CT, clotting time; CFT, clot formation time; A5, amplitude at 5 min after CT; MCF, maximum clot firmness; LI30, lysis index at 30 min after CT; LI60, lysis index at 60 min after CT. Data are presented as median (interquartile range).

	VENT	TS	TS+AB	TS+TM	TS+COMBI
IL-1β (pg ml ⁻¹)	< 91.6	< 91.6	< 91.6	< 91.6	< 91.6
IL-6 (pg ml ⁻¹)	517 (322 – 898)	357 (251 – 696)	390 (161 – 1452)	380 (181 – 801)	147 (89 – 255)*
sICAM-1 (ng ml ⁻¹)	28.6 (21.8 – 33.6)*	16.0 (13.0 – 18.4)	18.3 (15.0 – 19.0)	16.6 (14.5 – 21.2)	16.2 (9.3 – 17.9)
sCD62P (ng ml ⁻¹)	27.7 (24.1 – 30.9)*	18.8 (16.7 – 20.4)	19.3 (16.8 – 23.0)	19.3 (17.3 – 25.3)	16.9 (12.6 – 21.4)
Lung wet/dry	4.2 (4.1 – 4.3)	4.1 (4.0 – 4.2)	4.1 (3.9 – 4.5)	4.0 (3.8 – 4.1)	4.0 (3.8 – 4.2)
Kidney wet/dry	3.7 (3.6 – 3.8)	3.8 (3.7 – 3.2)	3.8 (3.7 – 3.9)	3.7 (3.7 – 3.8)	3.8 (3.7 – 3.9)
Liver wet/dry	3.2 (3.1 – 3.3)	3.3 (3.2 – 3.3)	3.3 (3.3 – 3.3)	3.3 (3.2 – 3.3)	3.3 (3.3 – 3.5)

Table S4. Inflammation and organ oedema. VENT, ventilation + vehicle; TS, trauma and shock + vehicle; TS+AB, trauma and shock + anti-high mobility group box-1 (HMGB-1) monoclonal antibody (mAB); TS+TM, trauma and shock + recombinant thrombomodulin (rTM); TS+COMBI, trauma and shock + anti-HMGB-1 mAb + rTM; IL-6, interleukin-6; IL-1 β , interleukin-1 bet; sICAM-1, soluble intercellular adhesion molecule-1; sCD62P, soluble P-selectin. Data are presented as median (interquartile range). *P<0.05 compared to TS.

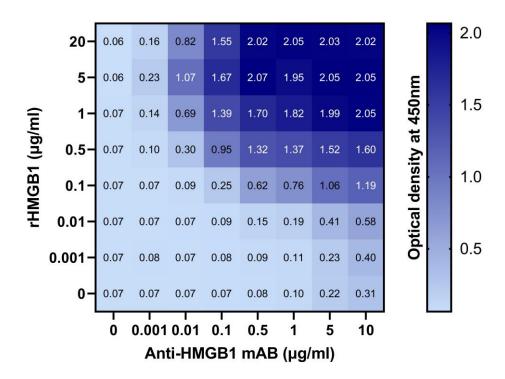


Figure S1. Binding specificity of anti-HMGB-1 mAB. Anti-high mobility group box-1 (HMGB-1) monoclonal antibody (mAb) used in these animal experiments binds recombinant mouse HMGB-1 in a dose-dependent manner.

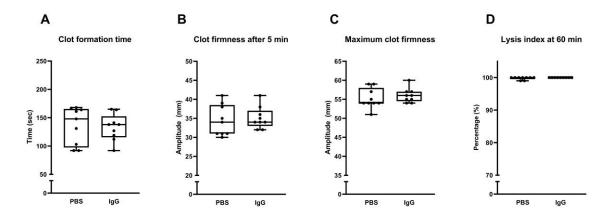


Figure S2. Effect of immunoglobulin G (IgG) on rotational thromboelastometry (ROTEM) ex-tem. Data presented as median (interquartile range). Mouse whole blood, collected in trisodium citrate 109 mM (1/9 v/v ratio) was incubated with either Purified Mouse IgG2b, κ Isotype Ctrl Antibody 12.5 μ g ml $^{-1}$ (Biolegend, USA) or phosphate-buffered saline (PBS). A) ROTEM ex-tem clot formation time, B) ROTEM ex-tem clot firmness after 5 minutes, C) ROTEM ex-tem maximum clot firmness, D) ROTEM ex-tem lysis index at 60 minutes. Data presented as median (interquartile range).

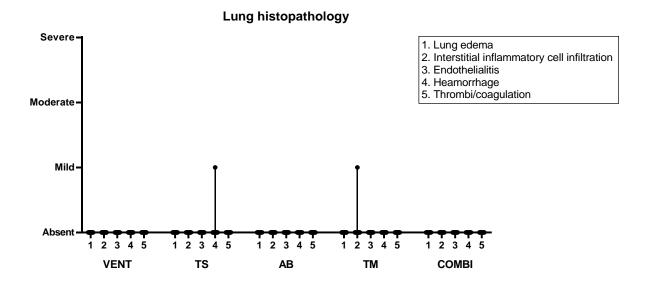


Figure S3. Lung histopathology scores. Data are presented as median with range (all points are shown).

Reference

1. Zhou H, Wang Y, Wang W, Jia J, Li Y, Wang Q, et al. Generation of monoclonal antibodies against highly conserved antigens. PloS one. 2009;4(6):e6087-e.